电子化学品

Mn₃O₄微观结构对固相合成类单晶锰酸锂的影响

尹金佩¹,王 洋¹,朱林剑²,刘泽萍²,范广新^{1,2*}

(1. 河南理工大学 材料科学与工程学院,河南 焦作 454003;2. 焦作伴侣纳米材料工程有限公司, 河南 焦作 454000)

摘要:探究了 Mn₃O₄ 的微观结构对高温固相法制备类单晶锰酸锂(LiMn₂O₄)的影响。结果表明,前驱体对 LiMn₂O₄ 的结构和形貌有决定性的影响。粒度小、比表面积大的类球形 Mn₃O₄ 更易制得类单晶锰酸锂,其颗粒团聚致密、表面光滑,且晶胞参数小、能量密度大、Li⁺浓度高。类单晶锰酸锂的综合电化学性能和热稳定性远高于非类单晶材料,在0.2 C 倍率下首次放电比容量和库仑效率分别高达 112.50 mA·h/g、96.5%,8 C 倍率下放电比容量仍有 102.11 mA·h/g,200 次循环后容量保持率为 90.1%。类单晶锰酸锂优异的性能归因于其具有稳定的晶体结构和外露表面、较高的 Li⁺浓度,在电化学反应中结构稳定、锂离子迁移速率快、电极极化和电荷转移阻抗小。 关键词:前驱体;类单晶锰酸锂;锂离子浓度;微观结构;热稳定性;电子化学品 中图分类号: TQ152; TM911 **文献标识码:**A **文章编号:** 1003-5214 (2023) 03-0608-06

Effect of Mn₃O₄ microstructure on solid-phase synthesis of mono-like lithium manganate

YIN Jinpei¹, WANG Yang¹, ZHU Linjian², LIU Zeping², FAN Guangxin^{1,2*}

(1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China; 2. Jiaozuo Companion Nano Materials Engineering Co., Ltd., Jiaozuo 454000, Henan, China)

Abstract: The influence of Mn_3O_4 microstructure on the synthesis of mono-like lithium manganate(LiMn₂O₄) by high temperature solid state reaction was investigated, and the results showed that the precursors had a great influence on the structure and morphology of LiMn₂O₄. The spheroid Mn₃O₄ with small particle size and large specific surface area was more likely to produce mono-like lithium manganate, which had dense particle agglomeration, smooth surface, small cell parameters, high density and Li-ion concentration. The mono-like lithium manganate exhibited first discharge specific capacity of 112.50 mA·h/g and coulomb efficiency at 0.2 C rate of 96.5%, with the discharge specific capacity remained as high as 102.11 mA·h/g at 8 C rate and the capacity retention of 90.1% even after 200 recycles, indicating much higher comprehensive electrochemical performance and thermal stability in comparison to non-like single crystal material. The excellent performance of mono-like lithium manganate was attributed to its more stable crystal structure, larger exposed surface, and higher Li-ion concentration. Moreover, the mono-like lithium manganate displayed stable structure, fast lithium ion migration rate, small electrode polarization and charge transfer impedance during the electrochemical reaction process.

Key words: precursors; mono-like lithium manganate; Li-ion concentration; microstructure; thermal stability; electronic chemicals

随着便携式电子设备、电动工具和动力汽车等 领域的快速发展,锂离子电池的应用越来越普遍。

作为正极材料的尖晶石锰酸锂(LiMn₂O₄)由于高比 能量、安全性好、环境友好及成本低等优点得到广

基金项目: 国家自然科学基金重点项目(U1804135, 51671080); 河南省科技创新人才计划(194200510019)

收稿日期: 2022-08-20; 定用日期: 2022-10-24; DOI: 10.13550/j.jxhg.20220775

作者简介: 尹金佩(1998—), 女, 硕士生, E-mail: 18339183103@163.com。**联系人:** 范广新(1981—), 男, 副教授, E-mail: fangx@hpu.edu.cn。

泛应用,但其综合性能仍有待进一步提升^[1-3]。

改善正极材料性能的方法主要有离子掺杂、表 面包覆和显微结构控制等^[4]。其中,显微结构控制 因无需引入其他元素而备受关注,其通过控制显微 结构得到的正极材料类型有核壳结构、纳米棒状、 类球型和单晶结构等[5-8]。单晶正极材料由于倍率性 能优和循环寿命长等受到重视。但是单晶材料在制 备过程中,由于要控制比例配制溶液,加入沉淀剂 或络合剂,以及严格控制温度、pH、搅拌和反应速 度,且生成沉淀物或凝胶后还需要经过滤、洗涤、 干燥、烧结等步骤,工序繁琐,难以大批量生产[8-10]。 因此,产业上对具有类单晶结构且低成本的正极材 料颇为青睐。到目前为止,已得到商业应用的类单晶 正极材料有 LiNi_{0.5}Co_{0.2}Mn_{0.3}、LiNi_{0.6}Co_{0.2}Mn_{0.2}等^[11-13]。 工业上制备类单晶结构正极材料的常用方法是高温 固相法,通过前驱体和锂盐界面间接触、反应、成 核和晶体生长制得正极材料,其显微结构往往受前 驱体的影响^[14]。Mn₃O₄因具有与锰酸锂相似的尖晶 石结构,且合成的锰酸锂具有循环及高温性能好的 优点,成为生产锰酸锂的常用前驱体之一[15-16]。

鉴于此,本文选取两种不同微观结构的 Mn₃O₄, 以探究其对制备类单晶锰酸锂结构和电化学性能的 影响。

1 实验部分

1.1 试剂与仪器

Mn₃O₄,化学纯,中钢天源磁性材料厂;Li₂CO₃, AR,阿拉丁试剂(上海)有限公司;乙炔黑(ACET, 质量分数 99%),深圳市铭锐祥自动化设备有限公 司;聚四氟乙烯(PVDF),化学纯,常熟市新华化 工有限公司;*N*-甲基吡咯烷酮(NMP),AR,国药 集团化学试剂有限公司;电解液(1 mol/L LiPF₆ 的 碳酸乙烯酯/碳酸二乙酯溶液),AR,广州天赐高新 材料股份有限公司。 OTF-1200X 型高温管式炉,合肥科晶材料技术 有限公司;CT3008W 型电池测试仪,深圳市新威尔 电子有限公司;CS350H 型电化学工作站,武汉科 思特仪器股份有限公司;Merlin Compact 型扫描电 子显微镜(SEM),德国蔡司公司;Smart-lab 型转 靶 X 射线衍射仪(XRD),日本理学公司; 3H-2000BET-A 型氮吸附比表面积测试仪(BET), 北京贝士德公司;Mastersizer 3000E 型激光粒度分析 仪,英国马尔文仪器公司;STA449F3-QMS403D 型程 序控温热焓分析仪,德国耐驰仪器制造有限公司。

1.2 材料制备

两种不同微观形貌和结构的 Mn_3O_4 分别记为前 驱体 1、2,两种前驱体的微观形貌见图 1,基本理 化信息如表 1 所示。可以看出,前驱体 2 与前驱体 1 相比,粒度更小且比表面积更大。分别将前驱体 1、 2 和 Li₂CO₃ 按 n(Mn) : n(Li)=2 : 1.05 (8.259 g 前驱 体和 2.100 g Li₂CO₃) 配比均匀混合后置于管式炉 中,以 5 ℃/min 的升温速率加热到 650 ℃并保温 10 h,再升温到 830 ℃保温 15 h,自然冷却至室温, 得到两种锰酸锂材料,分别标记为 LMO-1 和 LMO-2。

图 1 前驱体 1 (a、b)和前驱体 2 (c、d)的 SEM 图 Fig. 1 SEM images of precursor 1 (a, b) and precursor 2 (c, d)

	表 1 前驱体的主要物化指标
Table 1	Main physical and chemical indicators of precursors

材料夕称		质量分	数 [®] /%		粒度/µm			₩ 丰 面 和 ^⑤ /(m ² /a)
初件石协	Mn	S	Cl	Fe	D10 ²⁰	D50 ³	D90 [®]	比衣曲秋 /(m/g)
前驱体1	71.28	0.02	0.04	0.0008	5.1	15.6	22.8	0.50
前驱体 2	71.40	0.01	0.03	0.0020	1.8	3.1	6.2	2.00

①除氧元素外的成分; ②D10 为样品累积粒度分布达 10%时所对应的粒径; ③D50 为样品累积粒度分布达 50%时所对应的粒径; ④D90 为样品累积粒度分布达 90%时所对应的粒径; ⑤采用 BET 法计算,下同。

1.3 材料表征

用扫描电子显微镜(电压 10~15 kV)观察材料的颗粒形貌及尺寸;利用转靶 X 射线衍射仪(Cu

靶辐射)测试材料的晶体结构,条件为管电压40 kV、管电流 150 mA、扫描范围 10°~90°、扫描速率 10 (°)/min;使用氮吸附比表面积测试仪和激光粒度分

析仪分析材料的比表面积和粒度;利用程序控温热焓 分析仪对材料进行热分析,测试条件为氮气气氛、升 温速率为5 ℃/min、温度范围 30~500 ℃。

1.4 电化学性能测试

将锰酸锂样品、导电剂(炭黑)和粘结剂(PVDF) 按质量比8:1:1(总质量为0.400g)充分混合, 加入2mLNMP搅拌均匀得到浆料。然后将浆料涂 敷在裁好的铝箔上,并在90℃的真空干燥箱内干 燥12h,得到正极片。以金属锂为负极,在充满氩 气的手套箱中组装 CR2016型纽扣电池。在充放电截 止电压为2.75~4.30V条件下,采用电池测试仪对电 池进行充放电性能测试;使用电化学工作站对电池进 行循环伏安曲线分析(扫描范围及速率为3.0~4.6V和 0.2mV/s)和交流阻抗测试(频率和振幅为 0.05~1× 10⁵ Hz和5mV)。

2 结果与讨论

2.1 Mn₃O₄ 微观结构对锰酸锂结构与形貌的影响

图 2a 是 LMO-1 和 LMO-2 材料的 XRD 谱图。 对比可知,两种材料均是以 2*θ*=18.6°为最强峰的衍 射峰组,且与 LMO 的标准卡片(JCPDS No. 88-1026) 位置相吻合,未出现明显的杂峰,两种锰酸锂都具 有立方相尖晶石结构(空间群 *Fd3m*),说明尽管 Mn₃O₄ 微观结构不同,但不影响单一尖晶石锰酸锂 相的形成^[17]。在尖晶石锰酸锂(三维隧道结构)中, Li⁺占据四面体 8*a*(8 为整个晶胞的等效点个数,*a* 为最高对称位置)位置; Mn^{3+/4+}占据八面体 16*d* 位 置;八面体中空余的 16c 位与四面体 8a 位连通成 Li⁺扩散的三维通道 8a-16c-8a。在 2 θ =18.597°、 36.098°处对应于晶面(111)和(311)特征峰强度 的比值〔 $I_{(111)}/I_{(311)}$ 〕可代表阳离子的混排程度^[18], 比值越高说明排列越有序。LMO-2 的 $I_{(111)}/I_{(311)}$ 值高 于 LMO-1,说明 LMO-2 晶体中原子排列更为有序。

为深入分析前驱体对锰酸锂晶体结构的影响, 从无机晶体结构数据库(ICSD)中选择尖晶石型锰 酸锂(ICSD85341)为模型,对上述 XRD 谱图进行 Rietveld 结构精修(如图 2b 所示,其中,差值=谱 图衍射峰峰强-实际观察谱图衍射峰峰强),结果列 于表 2。LMO-2 的 Li—O 键长较 LMO-1 大,因而 具有较小的 Li—O 键能,更有利于 Li⁺的脱/嵌过程, 提升材料的倍率性能。同时,LMO-2 晶胞参数和 Mn—O 键长均比 LMO-1 小,说明 LMO-2 的晶体结 构更稳定,这是因为颗粒尺寸小、比表面积较大的前 驱体,在固相反应中具有更高的反应活性,反应更加充 分^[19],从而使锰酸锂结构更紧密,原子结合力更强, 预示着 LMO-2 将具有优异的倍率和循环性能。

通过公式(1)可计算出 LMO-1 和 LMO-2 的 Li⁺浓度,分别为 2.361×10⁻² 和 2.364×10⁻² mol/cm³。 显然,LMO-2 具有更高的能量密度和 Li⁺浓度,这 意味着类单晶锰酸锂拥有高的理论容量密度和小的 浓差极化。

$$C_{\rm Li} = \frac{D_{\rm X}}{M} \tag{1}$$

式中: C_{Li} 为 Li⁺浓度, mol/cm³; D_X 为理论能量密度, g/cm³; M为摩尔质量, g/mol。

	Table 2 Crystal structure parameters of LMO-1 and LMO-2								
材料名称	a/nm	V/nm ³	d(Li—O)/nm	d(Mn—O)/nm	$D_{\rm X}/({\rm g/cm^3})$	$R_{\rm p}/\%^{\odot}$	$R_{ m wp}/\%^{2}$	$I_{(111)}/I_{(311)}$	
LMO-1	8.2347	558.4	1.9541	1.9648	4.2682	10.42	11.47	2.145	
LMO-2	8.2301	557.5	1.9688	1.9556	4.2750	9.31	9.82	2.257	

表 2 LMO-1、LMO-2 的晶体结构参数 able 2 Crystal structure parameters of LMO-1 and LMO-

注:	R 因子表征实验值和理论值的差异;	① <i>R</i> _p 为图形剩余方差因子;	②R _{wp} 为加权图形剩余方差因子。
----	-------------------	------------------------------------	-------------------------------

图 2 LMO-1 和 LMO-2 的 XRD 谱图(a)及 LMO-2 的 XRD 精修图(b) Fig. 2 XRD images of LMO-1 and LMO-2 (a) and XRD refinement image of LMO-2 (b)

图 3 为 Mn₃O₄ 前驱体及锰酸锂材料的 SEM 图。 可以看出,两种锰酸锂二次颗粒均由一次晶粒团聚 而成,呈现出与前驱体相似的类球形结构,说明 Mn₃O₄ 前驱体具有较强的稳定性,在高温固相法制 备锰酸锂时,可保持较完整的形貌^[13];且它们的二 次颗粒尺寸均较前驱体大;粒度和比表面积也同样 受前驱体的影响(见表 1、3)。但形貌上存在着明 显的差异:LMO-1的一次粒子棱角分明,二次颗粒 表面粗糙,尺寸分布范围(5~15 μm)较宽;LMO-2 的一次粒子尺寸较小、团聚紧密,二次颗粒表面光 滑,尺寸分布范围(3~5 μm)较窄,表现出类单晶 正极材料的形貌特征^[10]。由此可见,粒度小、比表 面积大(表 1)的类球形 Mn₃O₄前驱体 2 更有利于 制备类单晶锰酸锂。

- 图 3 前驱体 1 (a)、LMO-1 (b、c)和前驱体 2 (d)、 LMO-2 (e、f)的 SEM 图
- Fig. 3 SEM images of precursor 1 (a), LMO-1 (b, c), precursor 2 (d) and LMO-2 (e, f)

表 3 LMO-1、LMO-2 的粒度和比表面积 Table 3 Particle size distribution and specific surface areas of LMO-1 and LMO-2

材料夕积		粒度/μm	₩ 志 面 和 /(m ² /a)	
初件石协	D10	D50	D90	比衣叫积/(m/g)
LMO-1	8.19	16.6	29.9	0.30
LMO-2	5.36	11.8	26.5	0.49

2.2 Mn₃O₄微观结构对锰酸锂电化学性能的影响

图 4 是两种 LMO 在 0.2 C 倍率下的首次充放电 曲线。可以看出,二者的充放电曲线基本一致,都 具有典型的两个电位平台,分别在 4.1 和 4.0 V 附近, 对应着 Li^+ 脱/嵌过程中 λ -MnO₂ \rightleftharpoons $Li_{0.5}Mn_2O_4$ 和 $Li_{0.5}Mn_2O_4$ \rightleftharpoons $LiMn_2O_4$ 的两次可逆转变^[20]。LMO-1 和 LMO-2 的放电比容量和库仑效率(同循环过程中 放电比容量与充电比容量之比)分别为: 109.23 mA·h/g、90.8%和 112.50 mA·h/g、96.5%; LMO-1 和 LMO-2 的充电压平台均约在 4.1 V,放电电压平 台分别在 3.9、4.0 V 附近。显然,类单晶 LMO-2 的 放电平台电压较高,充/放电平台的电压差较小。这说 明类单晶锰酸锂具有高的容量密度和小的电极极化 ^[21],这得益于其较高的能量密度和 Li⁺浓度。

图 4 LMO-1 和 LMO-2 的首次充放电曲线 Fig. 4 Initial charge/discharge curves of LMO-1 and LMO-2

图 5a 为 LMO-1 和 LMO-2 的倍率性能曲线。由 图 5a 可知,随着放电电流密度的增加,锰酸锂的放 电比容量逐渐减小。在相同倍率下,LMO-1 的放电 比容量均低于 LMO-2。在 8 C 倍率下,LMO-1 的放 电比容量仅有 69.63 mA·h/g,而 LMO-2 高达 102.11 mA·h/g,分别降至 0.2 C 下放电比容量的 63.7%、 90.8%。

图 5 LMO-1 和 LMO-2 的倍率曲线 (a) 及循环曲线 (b) Fig. 5 Rate curves (a) and cycle curves (b) of LMO-1 and LMO-2

当再次回到 0.2 C 时,材料的放电比容量均无

明显衰减。由此可以看出,类单晶锰酸锂具有突出 的高倍率放电性能,这是由于类单晶 LMO-2 较小的 晶胞参数使其 Li⁺扩散通道变短,稳定的晶体结构更 有利于 Li⁺的脱/嵌过程。图 5b 为两种材料在1C倍 率下循环 200 次的比容量变化曲线。可以看出, LMO-1、LMO-2 在1 C 倍率下的首次放电比容量分 别为 107.40 和 116.27 mA·h/g,在经过 200 次循环后, 放电比容量分别降为 87.25 和 104.76 mA·h/g,容量 保持率(1 C 下循环 200 次后的放电比容量与首次 放电比容量之比)分别为 81.2%、90.1%,说明类单 晶锰酸锂具有良好的循环性能。类单晶锰酸锂具有 团聚致密、颗粒间隙小、表面光滑(图 3)的独特 显微结构,可有效地降低材料的外露面积和与电解 液的接触,从而减缓了 Mn³⁺的溶解,提高了材料的 循环稳定性。

经过两次循环后两种材料第 3 次的循环伏安测 试曲线见图 6。可以看到,两种材料均具有两对明 显的氧化还原峰,其中,类单晶 LMO-2 的氧化还原 峰电位差($\Delta E_{p2}=0.5025 V$)明显小于 LMO-1($\Delta E_{p1}=$ 0.5736 V),这与前文所述过程(图 4)中 Li⁺的两步 脱/嵌是一致的^[22]。小的电位差也印证了类单晶锰酸 锂具有更弱的电极极化和较好的充放电可逆性。

图 6 LMO-1 和 LMO-2 的第 3 次循环伏安曲线 Fig. 6 3rd cyclic voltammetry curves of LMO-1 and LMO-2

图 7a 是 LMO-1 和类单晶 LMO-2 的交流阻抗 (用等效电路 { R(CR)W }) 拟合曲线(EIS)。交流 阻抗曲线均由高频区、中频区的半圆和低频区直线 组成。在 EIS 谱图中,横坐标为等效电阻值,纵坐 标为等效电抗值,曲线与坐标轴的截距为电池体电 阻(R_s),高频区半圆表示电荷转移阻抗(R_{ct}),它 对材料的电化学性能有很大影响;低频区斜线表示 Warburg 阻抗(W_0),其反映着 Li⁺在充放电时的扩 散能力^[23]。对 LMO-1 和 LMO-2 交流阻抗曲线进行 拟合得到电荷转移阻抗的拟合数值分别为 181.3 和 140.6 Ω 。类单晶锰酸锂在交流阻抗测试中具有较小 的电荷转移阻抗和较高的电导率。

为了进一步研究材料的Li⁺迁移速率,本文采用

公式(2)和(3)^[20]计算锂化学扩散系数(D_{Li⁺}, 单位为 cm²/s):

$$Z' = R_{\rm s} + R_{\rm ct} + \sigma \omega^{-0.5} \tag{2}$$

$$D_{\rm Li^+} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_{\rm Li}^2 \sigma^2}$$
(3)

式中: Z'为 Warburg 阻抗, Ω ; σ 为 Warburg 阻抗 因子, $(rad/s)^{0.5}$, Ω ; ω 为角频率($\omega = 2\pi f$), rad/s, 其中 f为交流信号的频率, Hz; R 为气体常数, 8.314 J/(mol·K); T为实验环境的绝对温度, 298.15 K; A为浸入电解液的正极材料的面积, 1.54 cm²; n为 电化学反应电子的数量, 锰酸锂的 n 为 1; F 为法拉 第常数, 96500 C/mol。

σ可由 EIS 数据中的 Z' 和 $ω^{-0.5}$ 通过公式 (2) 求 得,如图 7b 所示。通过公式 (3) 计算得到 LMO-1 和 LMO-2 的 D_{Li^+} 分别为 0.9733×10⁻¹⁵ 和 1.6420× 10⁻¹⁵ cm²/s。显然,类单晶 LMO-2 具有更高的 Li⁺ 迁移速率。这都得益于 Mn₃O₄ 前驱体粒度小、比表 面积大 (表 1) 的结构特点及团聚表面光滑的特殊 形貌。

- 图 7 LMO-1 和 LMO-2 的 EIS 谱图(a)及 Z'和 ω^{-0.5} 的 拟合曲线(b)
- Fig. 7 EIS spectra of LMO-1 and LMO-2 (a) and fitted curves of Z' and $\omega^{-0.5}(b)$

2.3 Mn₃O₄ 微观结构对锰酸锂热稳定性的影响

图 8 是 LMO-1 和 LMO-2 处于充电态(恒流充 电,截止电压 4.3 V)的 DSC 曲线。由图 8 可见, 在 350~475 ℃内,两种材料均出现放热峰,且起始 放热温度和放热峰温度分别为 350 和 425 ℃, 差别 不大, 但类单晶 LMO-2 放热峰面积较 LMO-1 大幅 度减小。由此可知, 充电态的 LMO-2 与电解液的反 应更少, 具有更好的热稳定性^[24]。这主要是因为, 类单晶锰酸锂受 Mn₃O₄ 微观结构的影响, 具有更短 的 Mn—O 键长 (表 2), 键能的增加使材料结构稳 定性更强, 且稳定的外露表面也能使高温下材料的 结构变化减小。

3 结论

以不同微观结构的 Mn₃O₄ 为前驱体采用高温固 相法均能制得尖晶石锰酸锂,但其形貌和尺寸受前 驱体的影响较大,粒度小且比表面积大的类球形 Mn₃O₄ 易制得类单晶结构的锰酸锂,该材料的颗粒 团聚致密、表面光滑,且晶胞参数小、能量密度大 和 Li⁺浓度高。

类单晶锰酸锂具有更高的放电比容量、库仑效 率,大倍率性能好、循环稳定性和热稳定性强。原 因在于类单晶锰酸锂拥有稳定的晶体结构与外露表 面、高的 Li⁺浓度,且在电化学反应过程中 Li⁺迁移 速率高、电极极化和电荷转移阻抗小。

参考文献:

- CHEN H H. TiO₂-modified spinel lithium manganate for suppressing Mn ion dissolution in lithium ion batteries[J]. International Journal of Electrochemical Science, 2017, 12: 7817-7828.
- [2] MA J (马婧), WANG F P (王芳平), ZHOU K L (周凯玲), et al. Preparation of sandwich-type biochar electrode materials and performance of supercapacitor[J]. Fine Chemicals (精细化工), 2021, 38(2): 374-379.
- [3] WANG J L, ISLAM M M, DONNE S W. In-situ detection of LiMn₂O₄ dissolution during electrochemical cycling by[J]. Electrochimica Acta, 2021, 386: 138366.
- [4] GUO J M (郭佳明), LIANG J L (梁精龙), LI H (李慧), et al. Progress on preparation method and research of LiMn₂O₄ as cathode materials for lithium-ion batteries[J]. New Chemical Materials (化工 新型材料), 2020, 48(7): 43-51.
- [5] HARIPRASAD K, NARESH N, NAGESWAR A R B, et al. Preparation of LiMn₂O₄ nanorods and nanoparticles for lithium-ion battery applications[J]. Materials Today: Proceedings, 2016, 3(10): 4040-4045.
- [6] YUG (余刚), XIAO ZA (肖作安), ZHOU Z (周哲), et al. Ni-doped

LiMn₂O₄ nanorods *via* template-method and its electrochemical performance as cathode materials for lithium ion batteries[J]. Journal of the Chinese Ceramic Society (硅酸盐学报), 2017, 45(1): 15-19.

- [7] WANG T (汪涛), FAN S J (樊少娟), YANG L M (杨立铭). A method of modifying micron-sized lithium nickel-manganate material with core-shell structure: CN106025267A[P]. 2016-10-12.
- [8] LIZT (李子涛). Preparation of single-crystalline spinel LiMn₂O₄ for high performance lithium-ion battery cathode material[D]. Shenyang: Northeastern University (东北大学), 2013.
- [9] LIU P (刘攀), LI W S (李文升), XU G F (许国峰), et al. Study on preparation process and properties of high performance single crystal LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ material[J].Chinese Journal of Power Sources (电源技术), 2019, 43(7): 1104-1106.
- [10] CHENG D (程迪), TIAN X Y (田新勇), XU Y J (徐云军), et al. Synthesis and electrochemical characteristics of mono-like and longlife high voltage LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ cathode material[C]// Proceedings of the 31st Annual National Conference on Chemical and Physical Power (第 31 届全国化学与物理电源学术年会论文集), 2015: 204-207.
- [11] TANG S H (唐盛贺), ZHOU H Z (周汉章), LIU G H (刘更好), et al. Synthesis and characterization of mono-like LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ as anode material for Li-ion battery[J]. New Chemical Materials (化工 新型材料), 2017, 45(4): 139-141.
- [12] HUWL (胡文理), HEFR (何凤荣), HUQ (胡骐), et al. A kind of single crystal lithium nickel cobalt manganate preparation method: CN111370683A[P]. 2020-07-03.
- [13] HUANG W J (黄文进), WANG Z J (王泽杰), DU W P (杜婉萍), et al. Study on the particle size of raw materials on the electrochemical performance of solid-phase synthesis of lithium manganate cathode[J]. Jiangxi Metallurgy (江西冶金), 2020, 40(3): 12-17.
- [14] HU W L (胡文理), CHEN H L (陈海轮), HU Q (胡骐). A preparation method of lithium nickel cobalt manganate precursors: CN113735187A[P]. 2021-12-03.
- [15] HAN Y C (韩要丛), TANG Y B (唐跃波), LI P L (李普良), et al. Investigation of spinel LiMn₂O₄ synthesized by Mn₃O₄[C]// Proceedings of the 29th Annual National Conference on Chemical and Physical Power Sources (第 29 届全国化学与物理电源学术年 会论文集), 2011: 22-25.
- [16] LIANG Q M (梁其梅), LIU Q (刘清), GUO J M (郭俊明), et al. Synthesis and electrochemical properties of spinel Li_{1.02}Ni_{0.05}Mn_{1.93}O₄ cathode materials[J]. Journal of the Chinese Ceramic Society (硅酸 盐学报), 2021, 49(6): 1048-1055.
- [17] ZAWRAH M F, EZZAT A, FADALY E L, *et al.* Synthesis and characterization of nano Mn₃O₄ and LiMn₂O₄ spinel from manganese ore and pure materials[J]. Ceramics International, 2020, 46(11): 17514-17522.
- [18] MARCHNI F, CALVO E J, WILLIAMS F J. Effect of the electrode potential on the surface composition and crystal structure of LiMn₂O₄ in aqueous solutions[J]. Electrochimica Acta, 2018, 2(108): 706-713, 269.
- [19] GUO J K (郭进康), ZHONG S W (钟盛文), XU C (徐唱), et al. Synthesis of Li(Ni_{1/3}Mn_{1/3}Co_{1/3})O₂ as single crystal cathode material for long life lithium ion battery[J]. Chinese Journal of Power Sources (电源技术), 2018, 42(9): 1283-1285, 1293.
- [20] CAN Y J, HUANG Y D, WANG X C, et al. Facile synthesis of LiMn₂O₄ octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life[J]. Journal of Power Sources, 2015, 1(278): 574-581.
- [21] REN M M (任明明), LIU Z P (刘泽萍), YUAN Z L (袁振洛), et al. Microscopic mechanism of influence of doping F on structure and performance of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂[J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2021, 37(6): 1046-1054.
- [22] ZHOU H, WAN S, HE C, *et al.* Improved electrochemical performance of spinel LiMn₂O₄ *in situ* coated with graphene-like membrane[J]. Journal of Power Sources, 2014, 247: 721-728.
- [23] XIE Z D (谢志迪), YANG J W (杨建文), CHEN Q Q (陈权启), et al. Effect of ZnF₂ coating on performance of LiNi_{0.5}Mn_{1.5}O₄ cathode material for lithium-ion batteries[J]. Fine Chemicals (精细化 工), 2017, 34(3): 297-284, 340.
- [24] LIY (李燕), ZHAO Y J (赵煜娟), LIU X Y (刘欣燕), et al. Improvement of electrochemical performance and thermal stability of LiNiO₂ modified with surficial coating[J]. The Chinese Journal of Nonferrous Metals (中国有色金属学报), 2005, 15(1): 88-91.