Fabrication of glucose-responsive double drug delivery system for the release of insulin and cyclic adenosine monophosphate
DOI:
Author:
Affiliation:

1.Faculty of Chemistry and Environmental Science, Guangdong Ocean University;2.College of Chemistry, Chongqing Normal University

Clc Number:

TQ469

Fund Project:

Colleges Innovation Project of Guangdong Province(2017KQNCX093); Scientific Research Start-up Funds of Guangdong Ocean University(R18018); Science and Technology Plan Project of Zhanjiang City(2018A01042), College Student Innovation and Entrepreneurship Training Program of Guangdong Ocean University(CXXL2020294, CXXL2020301)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Mesoporous silica nanospheres (MSN) was prepared by hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) using N-hexadecyltrimethylammonium bromide (CTAB) as a template. The dual drug delivery system (Flu-G-Ins-MSN) was prepared by surface aminopropylation, phenylboration, cyclic adenosine monophosphate (cAMP) loading and gluconate insulin capping. The surface micromorphology, chemical structure, pore structure and surface charge were characterized by TEM, FTIR, XRD, N2 adsoorption-desorption, Zeta-potential analysis. Effect of stirring time on drug loading was examined. The effect of sugar sources, sugar concentration and pH on the release of insulin and cAMP was investigated. The results demonstrated that when the mass concentration of silica spheres was 10 g/L, the concentration of cAMP was 0.1 mmol/L, the drug loading could reach 25.9 μmol/g after stirring for 24 h. The release of glucose-triggered insulin and cAMP was significantly pH-dependent and increased with increasing pH. In the normal human physiological pH 7.4 environment, fructose and glucose exhibited the strongest stimulatory response to drug-loaded particles. Insulin release from 2 mg/mL drug-loaded particles stimulated with 50 mmol/L glucose for 0.5 h was up to 8.35 μmol/L, while the cAMP release for 20 h was up to 75%. The intermittent release experiments showed that glucose enables repeated stimulation of the uncapping for drug-loaded particles, and thus achieving a sustained controlled release of insulin and cAMP.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 16,2022
  • Revised:August 19,2022
  • Adopted:August 26,2022
  • Online: October 25,2022
  • Published: September 30,2022