The Preparation、Characterization and Electrochemical Performance of LiNi0.5Mn1.5O4 and lts Composite
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to improve the electrochemical performances, the precursor of LiNi0.5Mn1.5O4 is synthesized by spray drying and electrospinning. The cathode materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical performances of the battery are measured by galvanostatic charge-discharge, cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS). The results show that the as-prepared LiNi0.5Mn1.5O4 by spray drying presents the porous-tubular structure, the particle size is about 80 nm, and the cycling performance need to be improved. While the precursor is calcined at 900 ℃ to obtain the spinel LiNi0.5Mn1.5O4 with uniform particle distribution, of which the particle size is between 1 and 2 m by spray drying. The coulombic efficiency of pure LiNi0.5Mn1.5O4 at 0.1C prepared by spray drying and electrospinning are 48.1% and 50.3%, respectively. While the coulombic efficiency of carbon-coated LiNi0.5Mn1.5O4 prepared by spray drying is 53.4% and the capacity retention is still up to 93.3% even after 200 cycles at 1 C-rate, attributed to that the carbon coating layer decreased electrochemical transfer impedance (Rct) and inhibited the side reaction between material and electrolyte.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 06,2017
  • Revised:October 25,2017
  • Adopted:November 22,2017
  • Online: July 10,2018
  • Published:
Article QR Code